About Civil Engineering specialized fields
Civil engineering includes the planning, designing, construction, and maintenance of structures and altering geography to suit human needs.
Among the numerous fields in civil engineering we can mention: transportation (railroad facilities and highways); hydraulics (river control, irrigation, swamp draining, water supply, and sewage disposal); and structures (buildings, bridges, and tunnels).
Civil Engineering fields also include the following specializations:
Structural engineering
Geotechnical engineering
Environmental engineering
Transportation engineering
Construction engineering
Earthquake engineering
Environmental engineering
Geotechnical engineering
Water resources engineering
Materials engineering
Structural engineering
Transportation engineering
What is Civil Engineering?
Civil engineering involves the planning, designing laying out and constructing of buildings, railroads, highways, bridges, tunnels. They also work closely with architects and environmental engineers.
What does a Civil Engineer do?
Since civil engineering is very broad, civil engineering jobs are dependent on each chosen specialization taken by the engineer at University.
For civil engineering specializations there are usually three functions that are performed by the civil engineer:
Construction and Civil Engineering (II)
Construction projects are complex and time-consuming undertakings that require the interaction and cooperation of many different persons to accomplish. All projects must be completed in accordance with specific project plans and specifications, along with other contract restrictions that may be imposed on the production operations. Essentially, all civil engineering construction projects are unique. Regardless of the similarity to other projects, there are always distinguishing elements of each project that make it unique, such as the type of soil, the exposure to weather, the human resources assigned to the project, the social and political climate, and so on. In manufacturing, raw resources are brought to a factory with a fairly controlled environment; in construction, the “factory” is set up on site, and production is accomplished in an uncertain environment.
It is this diversity among projects that makes the preparation for a civil engineering project interesting and challenging. Although it is often difficult to control the environment of the project, it is the duty of the contractor to predict the possible situations that may be encountered and to develop contingency strategies accordingly. The dilemma of this situation is that the contractor who allows for contingencies in project cost estimates will have a difficult time competing against other less competent or less cautious contractors. The failure rate in the construction industry is the highest in the U.S.; one of the leading causes for failure is the inability to manage in such a highly competitive market and to realize a fair return on investment.
Construction and Civil Engineering (I)
The construction industry is one of the largest segments of business in the United States and around the world, with the percentage of the gross national product spent in construction over the last several years averaging about 10%. For 2001, the total amount spent on new construction contracts in the U.S. is estimated at $481 billion. Of this total, about $214 billion is estimated for residential projects, $167 billion for non residential projects, and the rest for non building projects. Construction is the realization phase of the civil engineering process, following conception and design.
It is the role of the constructor to turn the ideas of the planner and the detailed plans of the designer into physical reality. The owner is the ultimate consumer of the product and is often the general public for civil engineering projects. Not only does the constructor have an obligation to the contractual owner, or client, but also an ethical obligation to the general public to perform the work so that the final product will serve its function economically and safely.
The construction industry is typically divided into specialty areas, with each area requiring different skills, resources, and knowledge to participate effectively in it. The area classifications typically used are residential (single- and multifamily housing), building (all buildings other than housing), heavy/highway (dams, bridges, ports, sewage-treatment plants, highways), utility (sanitary and storm drainage, water lines, electrical and telephone lines, pumping stations), and industrial (refineries, mills, power plants, chemical plants, heavy manufacturing facilities). Civil engineers can be heavily involved in all of these areas of construction, although fewer are involved in residential. Due to the differences in each of these market areas, most engineers specialize in only one or two of the areas during their careers.
WHAT IS CIVIL ENGINEERING?
Civil engineering is a professional engineering discipline that deals with the design, construction and maintenance of the physical and naturally built environment, including works such as bridges, roads, canals, dams and buildings. Civil engineering is the oldest engineering discipline after military engineering, and it was defined to distinguish non-military engineering from military engineering. It is traditionally broken into several sub-disciplines including environmental engineering, geotechnical engineering, structural engineering, transportation engineering, municipal or urban engineering, water resources engineering, materials engineering, coastal engineering, surveying, and construction engineering. Civil engineering takes place on all levels: in the public sector from municipal through to federal levels, and in the private sector from individual homeowners through to international companies